Integrability of Hamiltonian systems and differential Galois groups of higher variational equations
نویسندگان
چکیده
منابع مشابه
Differential Galois obstructions for integrability of homogeneous Newton equations
In this paper we formulate necessary conditions for the integrability in the Jacobi sense of Newton equations q̈ = −F (q), where q ∈ C and all components of F are polynomial and homogeneous of the same degree l. These conditions are derived from an analysis of the differential Galois group of the variational equations along special particular solutions of the Newton equations. We show that, taki...
متن کاملGalois Theory of Differential Equations, Algebraic Groups and Lie Algebras
As a consequence the level of exposition varies considerably. In particular, some proofs (marked by ¶) and the Appendix require more mathematical background than the main body of the text. The reader is advised to study the paper without paying too much attention to those technical details. This gives sufficient information to complete the exercises. We hope that this introduction might motivat...
متن کاملLie symmetries and differential Galois groups of linear equations
For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In connection with this a new algorithm for computing the Lie symmetries of a linear ordinary differen...
متن کاملGalois Groups of Second and Third Order Linear Differential Equations
Using the representation theory of groups, we are able to give simple necessary and suucient conditions regarding the structure of the galois groups of second and third order linear diierential equations. These allow us to give simple necessary and suucient conditions for a second order linear diierential equation to have liouvillian solutions and for a third order linear diierential equation t...
متن کاملRenormalization group equations and integrability in Hamiltonian systems
We investigate Hamiltonian systems with two degrees of freedom by using renormalization group method. We show that the original Hamiltonian systems and the renormalization group equations are integrable if the renormalization group equations are Hamiltonian systems up to the second leading order of small parameter. To understand temporal evolutions of Hamiltonian systems, one useful method is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Scientifiques de l’École Normale Supérieure
سال: 2007
ISSN: 0012-9593
DOI: 10.1016/j.ansens.2007.09.002